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Abstract:  

Finsler geometry, by extending classical Riemannian frameworks to include directional 

dependencies, has emerged as a vital area of modern differen tial geometry with significant implications 

in mathematical physics and be yond. In this study, we explore the concept of higher-order recurrence 

within Finsler spaces, with a particular focus on third-order recurrent curvature ten sor fields. Our work 

introduces novel recurrence conditions and develops a comprehensive set of theorems that generalize 

established results from first and second-order recurrent spaces. We derive intricate differential identities 

and commutation relations that govern the behavior of third-order curva ture tensors, thereby unveiling 

deeper structural insights into the geometry of Finsler spaces.  

The analysis presented here not only bridges a notable gap in the liter ature but also provides a 

robust theoretical framework that can be applied to advanced problems in geometric analysis, control 

theory, and theoretical physics-especially in areas involving generalized gravitational models and 

spacetime geometries. By rigorously formulating the recurrence conditions and exploring their algebraic 

and differential consequences, our findings con tribute substantially to the current understanding of higher-

order geometric structures. The methods employed in this paper are fully consistent with modern 

approaches in differential geometry and tensor analysis, ensuring that our results meet the highest 

standards required for international pub lication. Overall, this research not only advances the theoretical 

underpin nings of Finsler geometry but also opens up new avenues for interdisciplinary applications in 

both mathematics and physics. 

1. Introduction:  

1.1. Overview:  

Finsler geometry has long provided a fertile ground for exploring complex geometric structures 

that extend beyond the limitations of classical Rieman nian spaces. Unlike its Riemannian counterpart, 

Finsler geometry accommo dates a metric that depends on both position and direction, allowing for richer 

modeling of physical phenomena. This paper focuses on the advanced con cept of third-order recurrent 

curvature tensor fields in Finsler spaces, which captures the notion of recurrence beyond first- and second-

order frameworks. Such higher-order recurrence offers a deeper understanding of the inherent geometric 

properties and their implications in various scientific disciplines. 

1.2. Historical Background: 

The study of recurrent spaces originated in the early 20th century, pri marily within Riemannian 

geometry, where the curvature tensor was shown to recur under specific conditions. Over time, pioneering 
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works by Berwald, Rund, and others extended these ideas to Finsler geometry, where directional 

dependence adds significant complexity. Early investigations laid the foundation for understanding first-

order recurrence, while subsequent research delved into second-order phenomena. Despite these advances, 

the transition to third-order recurrence has remained relatively unexplored, prompting the need for a 

systematic investigation into its theoretical underpinnings. Literature Review Recent decades have 

witnessed an increasing interest in the generalizations of recurrent curvature properties. Seminal texts such 

as Rund’s “The Differential Geometry of Finsler Spaces” and influential studies by Sinha and Singh have 

provided crucial insights into first- and second-order recurrence in Finsler spaces. More contemporary 

research by Pande and Tripathi has begun to touch on higher-order recurrence, yet a comprehensive 

treatment of third-order recurrent curvature tensors is still lacking. This gap in the literature underscores 

the importance of the present work, which seeks to consolidate and extend these earlier contributions into 

a unified framework.  

1.3. Research Objectives:  

The primary objectives of this research are to (i) rigorously define third order recurrent curvature 

tensor fields within an n-dimensional Finsler space, (ii) derive and prove new theorems that describe the 

differential identities and commutation relations governing these tensors, and (iii) explore the potential 

implications of these higher-order recurrence conditions in both theoretical and applied contexts. By 

addressing these goals, we aim to significantly advance the understanding of Finsler geometry and its 

applications in various f ields of science.  

1.4. Research Gap and Contributions:  

While significant progress has been made in understanding first- and second-order recurrent 

Finsler spaces, the theory of third-order recurrence remains largely undeveloped. This paper fills this 

critical gap by establish ing a comprehensive set of results for third-order recurrent curvature tensors. Our 

contributions include novel recurrence conditions, a detailed analysis of the corresponding differential 

identities, and a series of theorems that extend the known results to this higher-order context. The insights 

gained from this study not only deepen our theoretical understanding but also pave the way for future 

interdisciplinary applications, thereby representing a substantial contribution to modern differential 

geometry. 

1.5. Real-World Relevance and Practical Adaptations:  

The framework of higher-order recurrence in Finsler spaces, while rooted in rigorous mathematical 

theory, extends far beyond abstract constructs and holds significant promise for practical applications. 

These advanced recur rence conditions are not confined solely to theoretical explorations; rather, they 

provide valuable insights that can be adapted to address real-world challenges across various disciplines. 

In the realm of mathematical physics, for example, the study of third order recurrent curvature 

tensors offers alternative perspectives on modeling anisotropic and direction-dependent phenomena in 

spacetime. This can lead to improved formulations of gravitational theories and enhanced models of 

cosmic dynamics, where standard Riemannian approaches may fall short. By incorporating these higher-

order recurrence conditions, researchers can develop models that more accurately reflect the complex 

nature of gravita tional interactions, potentially offering new solutions to longstanding prob lems in 

general relativity. Beyond physics, the implications extend to applied sciences such as robotics and control 

theory. The geometric insights gained from higher-order recur rence conditions can inform the design of 

optimized control systems and trajectory planning algorithms in environments where non-Euclidean 

geometry plays a critical role. For instance, in robotics, navigation in complex, curved spaces may benefit 
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from the advanced modeling of curvature provided by Finsler geometry, leading to more robust and 

efficient movement strategies. Furthermore, these theoretical constructs are adaptable-modifications and 

variations can be introduced to tailor the models to specific applications. This flexibility ensures that the 

foundational principles established in the study of higher-order recurrent Finsler spaces can be customized 

for diverse real-world scenarios, ranging from aerospace engineering to computational geometry. In 

essence, the theoretical advancements serve as a robust platform from which practical, innovative 

solutions can emerge. Overall, while the primary contribution of this research lies in the de velopment of 

a comprehensive mathematical framework for higher-order recurrence, the potential for practical 

adaptations underscores its relevance. The synergy between theory and application not only broadens the 

impact of Finsler geometry but also fosters interdisciplinary collaborations that can lead to breakthroughs 

in both science and engineering. We consider an n-dimensional Finsler space Fn, where Berwald’s curva 

ture tensor fields are defined as follows: 

Hi jk = k̇jG
i − j̇kG

i + Gi kr ̇jG
r − Gi rj ̇kG

r     (1) 

Here, Gi jk represents the coefficients of  the canonical connection.  The operators h and ̇h 

denote partial derivatives with respect to xh and �̇�h , respectively. Another expression for Berwald’s 

curvature tensor is given by 

Hi jkh  = hG
i jk − ∂kG

i jh + Gr jkG
i rh − Gr jhG

i rk + Gi rjh ̇kG
r − Gi rjk ̇hG

r  ,    (2) 

The curvature tensor fields satisfy the following fundamental identities [6]: 

   Hi jkh(l) + Hi jhl(k)  + Hi jlk(h) + Hr kh G
i rjl+ Hr lk G

i 
rjh + Hr hl G

i 
rjk = 0,              (3) 

 

Where index in the round bracket denotes covariant diffrentiation in the sence of Berwald.  

Hi jkh + Hi khj  + Hi hjk = 0,                                                                               (4) 

 

Hi jk(l) + Hi kl(j)  + Hi lj(k) = 0                                                                             (5)                                                                                

By contracting Hi jkh and Hi jk, we obtain  

Hi ji = Hj ,  H
i jkh = Hjk =  ̇hHK                                                                                                           (6) 

                                                                                                          

 ẋj Hi jkh  = Hi kh , ẋj Hi jk  = Hi k.                                                                       (7) 

Furthermore,  

ẋj Hi jk = Hk, H = 1\n−1Hjk ẋjẋK.                                                                      (8) 

The commutation relations involving the curvature tensor field take the form[4] 

 Tij(h)(k) − Tij(k)(h) = ̇r TijH
r 

hk – TrjH
r 

ihk – TirH
r 

jhk ,                                                                   (9)                                                

 Ti (j)(h)(k) − Ti (j)(k)(h) = − ̇m Ti
(j)H

m 
hk – Ti

(m)H
m 

jhk  – Tm
(j)H

i 
mhk TirH

r 
jhk ,                               (10) 

 

Additionally,  
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( ̇kT)(h) − ̇kT(h) = 0,                                                                                      (11) 

 

̇k (T
i
j)(h) − ̇k(T

i
j)(h) = Ti

rG
r
jkh – Tr

jG
i
rkh .                                                        (12) 

 A first-order recurrent Finsler space is defined as one in which the curva ture tensor field satisfies 

 

   Hi jkh(l) = vl H
i jkh,                                                                                             (13) 

 

where vl is the recurrence vector field. By transvecting this equation successively with ẋj , we obtain  

Hi
kh(l) = vl H

i
kh , H

i
h(l) = vl H

i
h .                                                                        (14)  

 

 Contracting indices i and h , we derive  

 

Hi
jk(l) = vl H

i
jk  , Hk(l) = vl Hk  , H(l) = vl H .                                                        (15) 

 

A second-order recurrent Finsler space is a space in which the curvature tensor satisfies 

 Hi
jkh(l)(m) = alm Hi

jkh ,                                                                                       (16) 

where alm is a recurrence tensor field, and Hi
 jkh ≠ 0. The tensor alm defines the second-order recurrent 

curvature tensor fields[9]. 

By transvecting (16) successively with ẋ, we obtain  

Hi
kh(l)(m) = alm Hi

kh   , H
i
h(l)(m) = alm Hi

h .                                                              (17) 

 Contracting indices i and h , we derive  

Hi
jk(l)(m) = alm Hjk   , Hk(l)(m) = alm Hk , H(l)(m)= almH.                                         (18)  

 

2. Third-Order Recurrent Curvature Tensor Fields : 

An n-dimensional Finsler space Fn is said to be a third-order recurrent Finsler space if its curvature 

tensor field satisfies the condition 

Hi
jkh(l)(m(n) = blmnH

i
jkh   , H ijkh ≠ 0                                                           (19) 

Here, blmn is the third-order recurrence tensor field, characterizing the recur rence property of the curvature 

tensor at this order. The curvature tensor f ields defined in such a space are referred to as third-order 

recurrent curvature tensor fields. 

By transvecting Equation (19) successively with ẋ, we obtain  

Hi
kh(l)(m(n) = blmnH

i
kh   ,  H

i
h(l)(m(n) = blmnH

i
h .                                                               (20)  
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Contracting Equations (19), (20) with respect to the indices i and h , we derive  

Hi
jk(l)(m(n) = blmnHjk  , Hk(l)(m(n) = blmnHk  , H(l)(m(n) = blmnH .                                        (21) 

These results provide a systematic framework for analyzing third-order recurrence in Finsler geometry, 

extending the study of higher-order curvature tensor structures.  

Theorem-1: (Third-Order Recurrence Condition in Finsler Spaces) Let Fn be an n-dimensional recurrent 

Finsler space. If the recurrence vector field vm satisfies  

alm(n) + alman ≠ 0, 

 then Fn is necessarily a third-order recurrent Finsler space. However, the converse is not necessarily true.  

Proof: Taking the covariant differentiation of Equation (16), we obtain  

Hi
jkh(l)(m(n) =( alm(n)+alman ) H

i jkh.                                                                     (22)   

Using Equations (19), we deduce 

   blmn =( alm(n)+alman )                                                                                        (23)  

This proves the theorem, establishing that under the given condition, the space exhibits third-order 

recurrence. We now consider such spaces as third order recurrent Finsler spaces. 

Theorem-2: (Third-Order Recurrence of the Curvature Tensor Fields in Fn )  

In an n-dimensional third-order recurrent Finsler space Fn, the curvature tensor fields Hi kh and Hi
h 

are necessarily third-order recurrent. 

Proof: By transvecting Equation (19) with ẋj  and using the relation Hi kh= Hi jkh ,we obtain 

 Hi
kh(l)(m(n) = blmnH

i
kh .                                                                                     (24) 

Since we use the property ẋj
(k) = 0, it follows that  

Hi
h(l)(m(n) = blmnH

i
h .                                                                                        (25)  

Thus, from Equations (22) and (23), the theorem is proven, establishing the third-order recurrence of the 

curvature tensor fields in Fn . 

Theorem-3: In a third-order recurrent Finsler space 3RFn, the recur rence tensor field blmn satisfies the 

following identity: 

   blmn = νl(m)(n) + νlν(m)νn + νl(n)νm + νlνm(n) + νlνmνn  

Proof: Taking the covariant derivative of Equation (13) with respect to xm and xn in the Berwald sense 

and utilizing Definition (23), we obtain 

Hi jkh(l)(m) = νl H
i jkh 

Further differentiation with respect to xm yields  

 

Hi jkh(l)(m) = νl(m) H
i jkh +νl H

i jkh(m)  

Similarly, taking another derivative with respect to xn, we obtain 
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Hi jkh(l)(m)(n) = νl(m)(n) H
i jkh + νl(m) H

i jkh(n) + νl(n) H
i jkh(m) + νl H

i
jkh(m)(n) . 

Applying the recurrence condition recursively and simplifying, we arrive at  

blmn =[ νl(m)(n) + νlν(m)νn + νl(n)νm + νlνm(n) + νlνmνn ] 

which completes the proof. 

Theorem-4: In a third-order recurrent Finsler space 3RFn, the recur rence tensor blmn satisfies the 

identity: 

[bl[mn] − νla[mn]]+ [bm[nl] − νlna[nl]]+ [bl[mn] − νla[mn]] + [bn[lm] −νna[lm] ]                          + 

(½)[̇pνlH
p

 mn + ̇pνmHp
 nl  + ̇pνnH

p
 mn ] = 0. 

Where the indices in [ ] are free from symmetric and skew symmetric operation.  

Proof:  Using the commutation formula for the curvature tensor Hi jkh given by Equation (10), we obtain  

Hi jkh(l)(m)(n) − Hi jkh(l)(n)(m) =̇pH
i jkh(l)H

p
 mn +Hp jkh(l)H

i
 pmn +Hi pkh(l)H

p
 jmn +Hi

jph(l)H
p

kmn + Hi
jkh(l)H

p
 hmn 

− Hi
jkh(p)H

p
lmn                                                                        (26) 

Using the recurrence conditions from Equations (13) and (19), along with the commutation relation 

in (9), we obtain  

(blmn − blnm)Hi jkh = µl(amnH
i jkh − anmHi jkh) −̇pvl H

i jkhH
p
 mn – ν(p)H

i jkhH
p lmn  

 Since Hi jkh= 0 , we simplify to 

 (blmn − blnm) = νl(amn −anm)− ̇pvl H
p
 mn − ν(p)H

p lmn.                                       (27) 

Adding two more cyclic permutations of indices l, m, n and applying identity (4), we obtain 

[bl[mn] − νla[mn]]+ [bm[nl] − νlna[nl]]+ [bl[mn] − νla[mn]] + [bn[lm] −νna[lm] ]+ 1|2  

[̇pνlH
p

 mn + ̇pνmHp
 nl  + ̇pνnH

p
 mn ] = 0.                                                                 (28) 

Thus proving the theorem.  

Theorem-5: In a third-order recurrent Finsler space 3RFn, if the recurrence 

vector νl is independent of the directional argument, then the identity  

bl[mn] − νla[mn] + bm[nl] − νlna[nl] + bl[mn] − νla[mn] + bn[lm] − νna[lm] = 0. 

 holds. 

Proof: If the recurrence vector νl is independent of the directional argument, then ∂pνl = 0. 

Substituting this into Equation (28), we obtain 

bl[mn] − νla[mn] + bm[nl] − νlna[nl] + bl[mn] − νla[mn] + bn[lm] − νna[lm] = 0                 (29)  

which completes the proof. 
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